2 research outputs found

    Advances in silicon phased-array receiver IC's

    Get PDF
    Phased-Arrays are increasingly used, and require Silicon implementations to result in affordable multi-beam systems. In this paper, CMOS implementations of two novel analogue beamforming multi-channel receivers will be presented. A narrow-band highly linear system exploiting switches and capacitors in advanced CMOS is presented, implementing a fully passive switched capacitor vector modulator exploiting a zero-IF I/Q mixer: This technique is not applicable to very wideband phased-array receivers. These systems require true-time delay beamforming, which is implemented in the second CMOS implementation. An innovative gm-RC implementation of a true-time delay cell is exploited in a four-channel beamforming receiver with more than L.5 GHz bandwidth, in a standard 0.13 um CMOS process. Professional phased-arrays can often not live with the dynamic range limitations imposed by these implementations. To that end a SiGe implementation of an integrated receiver was realized targeting a digital beamforming phased-array. Dynamic range and flexibility of use were the main driving factors. Alltogether, these results show large progress with respect to the feasibility of Silicon-based phased-array front-end implementation for commercial as well as professional phased-arrays. © 2012 IEEE

    Compact cascadable gm-C all-pass true time delay cell with reduced delay variation over frequency

    Get PDF
    At low-GHz frequencies, analog time-delay cells realized by LC delay lines or transmission lines are unpractical in CMOS, due to their large size. As an alternative, delays can be approximated by all-pass filters exploiting transconductors and capacitors (g m -C filters). This paper presents an easily cascadable compact g m -C all-pass filter cell for 1-2.5 GHz. Compared to previous g m -RC and g m -C filter cells, it achieves at least 5x larger frequency range for the same relative delay variation, while keeping gain variation within 1 dB. This paper derives design equations for the transfer function and several non-idealities. Circuit techniques to improve phase linearity and reduce delay variation over frequency, are also proposed. A 160 nm CMOS chip with maximum delay of 550 ps is demonstrated with monotonous delay steps of 13 ps (41 steps) and an RMS delay variation error of less than 10 ps over more than an octave in frequency (1-2.5 GHz). The delay per area is at least 50x more than for earlier chips. The all-pass cells are used to realize a four element timed-array receiver IC. Measurement results of the beam pattern demonstrate the wideband operation capability of the g m -RC time delay cell and timed-array IC-architecture
    corecore